
AVO analysis of thin layers: 

Application to CO2 storage at Sleipner
S.Sturton, M.L. Buddensiek, M. Dillen

Figure 1: 

The injected CO2 at 
Sleipner 
accumulates in thin 
layers under intra-
reservoir mudstone 
layers. We model 
the two illustrated 
cases (red circles)
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Introduction
We present an application of model based AVO to a case

of thin layer reflections at Sleipner. We apply this method

to analyze the top most reflection from a series of

reflections that are interpreted to be several thin CO2

layers accumulating under intra-reservoir mudstone

layers; and/or multiples within the layers. The objective is

to estimate the thickness of the CO2 layer.

Application to real data

Model building
1. Definition model geometry at Sleipner:

The method: Model based, optimised AVO
1. Define a reflector class model

2. Forward model (realistic) reflection coefficients R(θ)

3. Approximate R(θ) via singular value decomposition:

4. Crossplot coefficients C1 and C2 of model and real data
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2. Estimation of seismic properties:

Figure 3: Reflection coefficients for 
various CO2-layer thicknesses in Model 1 
(color-coded). The dotted lines 
correspond to zero-variation, the 

other ones to 5%-varied 

seismic properties. 

Figure 4: 

Crossplot of corres-

ponding C1-C2 coefficients 

for  Model 1 (top) and 2 (bottom). 

The effect of the CO2-layer thickness is bigger 
than that of a 5% variation in the seismic 

properties, but an overlap occurs. Notice that the 
C1-C2-coefficient areas for each thickness are not 

necessarily different for the two models. 

Reflection coefficients and C1-C2 crossplots
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Figure 2: 

Model (corresponding to Model 1 
in Fig. 1) and seismic property 
ranges for CO2 collecting 
underneath a 6-m thick shale 
layer. The seismic properties are 
obtained from well-logs, CO2-
saturation profiles, thermo-
dynamic equations, and rock 
physics models. A 5% variation in 
all parameters accounts for 
uncertainty and natural variation.

Figure 5: Near-offset data for 
a line across the Sleipner 
plume (yellow box). 

Figure 3: 
Basis 
functions 
after SVD 
of R(θ) in 
Fig. 1

Figure 6: Mean amplitude for the 
top most reflector for every CDP 
gather. The color-code defines 
the position in the plume (edge 
or center)

Figure 7: Crossplot of C1-C2 coefficients of data 
and Model 1. The data coefficients are obtained 
by optimally fitting data to the basis functions 
obtained from Model 1 (Fig. 3). The color-code is 
the same as in Fig. 6. Also shown are the 
coefficients of the modeled data.

Conclusion
The real data coefficients show

the same trend of the modeled

data: Data from the center of the

plume, where the CO2 layer

supposedly is thickest, plot

further left, than those from the

edges, where the CO2 layer is

expected to thin-out. However,

the real data show considerably

more spread. Classification into

layer thicknesses would be

coarse due overlapping

coefficients.
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